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Abstract—Today, software components are provided by global
markets in the form of services. In order to optimally satisfy
service requesters and service providers, adequate techniques for
automatic service matching are needed. However, a requester’s
requirements may be vague and the information available about a
provided service may be incomplete. As a consequence, fuzziness
is induced into the matching procedure. The contribution of this
paper is the development of a systematic matching procedure that
leverages concepts and techniques from fuzzy logic and possibility
theory based on our formal distinction between different sources
and types of fuzziness in the context of service matching. In
contrast to existing methods, our approach is able to deal with
imprecision and incompleteness in service specifications and to
inform users about the extent of induced fuzziness in order
to improve the user’s decision-making. We demonstrate our
approach on the example of specifications for service reputation
based on ratings given by previous users. Our evaluation based
on real service ratings shows the utility and applicability of our
approach.

Index Terms: Service Selection, Service Matching, Require-
ments Specifications, Non-Functional Properties, Fuzzy Logic,
Uncertainty, Decision Making

I. INTRODUCTION

The increasing popularity of paradigms like service-oriented
computing and cloud computing is leading to a growing
number of service providers offering software components in
the form of deployed, ready-to-use services (Software as a
Service, SaaS) [57]. In order to benefit from these services,
service requesters need to discover the services that best
satisfy their requirements. For this purpose, service matching
approaches are used. These approaches determine whether the
specification of a provided service satisfies the requester’s
requirements specification [56]. For each provided service, a
matching approach delivers a matching result that indicates
to what extent the service specification satisfies the given
requirements specification. A number of matching approaches
already exist. The majority of them focuses either on structural
properties (e.g., signatures), behavioral properties (e.g., pre-
and post-conditions or protocols), or non-functional properties
(e.g., performance or reputation) (see [19] or PvDB+13 for an
overview).

Nevertheless, finding the “perfect match” remains a chal-
lenge, due to the imperfect nature of the information involved
in the matching procedure [61]. To begin with, a requester’s

requirements for a service are often specified vaguely, for
example in terms of natural language expressions (e.g., the
service should be “fast”). Moreover, the available information
on a provided service is typically incomplete and/or imprecise.
For example, for a service that newly enters the market,
determination of its reputation becomes difficult. Thus, various
sources of uncertainty or fuzziness make exact matching no
longer feasible.

We present a fuzzy matching approach that overcomes these
limitations. Our main contribution is twofold:

• We distinguish between multiple types and sources of
fuzziness: This is accomplished with the help of formal
concepts from fuzzy logic, which allows capturing and
modeling various types of incomplete, imprecise, and
uncertain information within a unified, coherent mathe-
matical framework. Moreover, such information accounts
for the graded nature of a requester’s satisfaction towards
the requirements in an adequate manner.

• Our approach delivers an expressive matching result that
informs users about the extent of induced fuzziness.
In detail, the matching results consist of a degree of
necessity and a degree of possibility with respect to
the fulfillment of the requirements, i.e., a lower and an
upper bound on the degree of user satisfaction. Thus,
our method provides important extra information about
uncertainty in service matching.

As opposed to this, existing approaches coping with im-
precise matching proposed in the literature (see [64] for
an overview) do not distinguish between different types of
fuzziness. For example, some approaches (e.g., [1], [45]) only
consider fuzziness in terms of graded user satisfaction, but they
ignore uncertainty. Furthermore, they only produce a single
matching degree, often chosen arbitrarily and lacking a clear
semantics. In particular, they do not deliver any feedback
on how uncertain these matching results are. In this way,
requesters cannot assess their risks regarding to what extent
the matching result might have been adulterated due to the
imperfection of the information involved.

For the purpose of illustration, we mainly adopt the exam-
ple of reputation data, i.e., a set of values representing the
reputation of a service based on ratings given by previous
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users. Reputation is a service property of special importance
for customers and providers as it reflects how satisfied previous
users were with a service. In addition, we show how our
approach can be combined with other matching approaches
like signature matching or matching of other quality properties
on the basis of our earlier work [62]. Furthermore, we demon-
strate how our approach can be applied to other service prop-
erties such as performance. The usefulness of our approach is
demonstrated in a case study including four experiments. In
particular, we collected real service ratings from the website
TrustRadius.com [79] and applied our approach to this data.

Our approach extends traditional approaches from the ar-
eas of service discovery and component retrieval with extra
benefits for the targeted end users. Service requesters specify
their requirements in a simple way and are allowed to remain
vague. Due to the awareness of present uncertainty within the
matching results, requesters are able to make better decisions
when selecting between services. Corresponding to their risk
aversion, they become able to choose either services that are
certainly a good match or services that may potentially (but
not necessarily) be perfect matches. In addition, the service
providers profit from additional information about how to
raise interest in their services. For them, the matching results
indicate whether service specifications need to be improved
in order to lead to less fuzzy matching results, satisfying
a greater range of requesters. All in all, we enable service
matching under more realistic circumstances compared to the
related work. We are able to explicitly deal with imprecision
and incompleteness in service specifications, which makes our
approach well applicable in practice.

Our paper is structured as follows. In Section II, we explain
the addressed problem of fuzziness in service matching by
using an example. Furthermore, we derive requirements for
the solution. On the basis of these requirements, we discuss
the related work in fuzzy service matching in Section III.
Section IV introduces foundations of fuzzy logic. The fuzzy
matching approach proposed in Section V is based on these
foundations and addresses the requirements explained earlier.
In Section VI, we describe how the proposed fuzzy matching
approach can be integrated into a matching process. We give
some details about the technical realization of our fuzzy
matching approach in Section VII. Experiments building on
this realization are presented in Section VIII. Section IX
concludes the paper.

II. PROBLEM DEFINITION AND REQUIREMENTS

Service matching is the process of comparing a specifi-
cation of requirements for a service to specifications of the
services provided in a service market [56]. Thus, the matching
approach is tightly connected to the representation of the
specifications the approach operates on. Different representa-
tions are possible as many different properties of a service
have to be matched, including functional properties (e.g.,
signatures or protocols) as well as non-functional properties
(e.g., performance or reputation). In the following, we take
the reputation of a service as an example.

A. Specifying Reputation Requirements

The reputation of a service is measured on the basis of
ratings stated by previous users, to express their satisfaction
with a certain service. Thus, reputation indicates not only
the popularity of a service but also its trustworthiness based
on human judgement [70]. Technically, the reputation of a
service is an aggregation of a set of ratings. Each rating has
different properties, like value (e.g., 4 stars within a 5-star
scale), age (e.g., two months), and context (e.g., a rating about
the performance or about the availability of a service). In the
following, we explain the representation we propose to specify
reputation requirements. The detailed language definition in
the form of a metamodel can be found in [2].

Reputation requirements can be modeled as a list of condi-
tions. As an example, consider the requirements specification
in Figure 1(a). This requirements specification consists of
five conditions, c1 – c5. For a full match, all conditions
have to be satisfied. If not all conditions are satisfied, the
matching approach returns a result that denotes to what extent
the conditions are satisfied. Based on this result, the requester
can compare different services easily in order to select one.
The more details a requester specifies, the more accurately can
the matching approach determine results that actually fit the
requester’s interests. However, with an increasing complexity,
also the set of services matching the requirements to a high
extent becomes smaller.

Each of the conditions in the requirements specification
refers to properties related to service reputation. For example,
c1 checks whether the overall reputation of a service is greater
or equal to 4 (based on a 5-star range as it is common in
today’s app stores). The conditions c2, c3, and c4 check
context-specific reputation values, i.e., the perceived response
time of the service (c2), the perceived security of a service
(c3), and the perceived availability of a service (c4). As a
further restriction to the reputation values requested by c2
and c3, the value must have been aggregated on the basis
of at least a specific number of ratings. This is specified
using the fuzzy term “many”. Such restrictions are useful as
a reputation value’s reliability increases with the number of
ratings it has been calculated from. Furthermore, c2 and c4
use a soft threshold, suggesting that the lower bound should be
approximately 4 with a toleration of slightly smaller values;
for example, a reputation of 3.95 would still be considered
acceptable to some degree. In c3, there is a restriction with
respect to time. Here, the reputation value should have been
created on the basis of ratings from the last three months.
These kinds of restrictions are based on the idea that recent
ratings are more relevant than old ones. This especially hap-
pens if the rated service has been updated or if the environment
of the raters has changed (e.g., the global sensitivity to security
in a specific domain increased due to some incident). C5 is
about the reputation of the service’s provider.

B. Reputation Matching

Figure 1(b) shows an example extract of the contents of a
reputation system in a tabular notation. These contents are
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Entity Context # Ratings
Service: ImagePro1 Overall 300 Rep(300 ratings) = 4.5
Service: ImagePro1 ResponseTime 80 Rep (80 ratings) = 3.5
Service: ImagePro1 Security 30 Rep (30 ratings, 3 months) = 2.75

Service: ImagePro1 Availability 10 Rep (10 ratings) = 4

Service: PicProcessor Overall 90 Rep (90 ratings) = 3.35
Service: PicProcessor ResponseTime 20 Rep (20 ratings) = 1.5
Service: PicProcessor Security 20 Rep (20 ratings, 3 months) = 4.5

Service: PicProcessor Availability 10 Rep (10 ratings) = 3
… … … …
Provider: IPServices Overall 130 Rep (130 ratings) = 3.5

(b) Available Ratings & Example Reputation Values(a) Requirements Specification

c2: RepRT(Service)   4
          based on many ratings

c1: Rep(Service)   4 

c3: RepSec(Service)    3
          based on many ratings
              of the last 3 months

c4: RepAvail(Service)   4

c5: Rep(Provider)   4

Fig. 1. Example requirements and available service information

used to evaluate the conditions of the requirements spec-
ification explained above. For example, reputation values
based on different contexts for the services ImagePro1 and
PicProcessor are depicted. We also see the reputation
of the service provider IPServices, which is the provider
of both the ImagePro1 and the PicProcessor services.
The third column depicts how many ratings are available per
service in total. The rightmost column depicts some example
reputation values calculated on the basis of these ratings.
Please note that these are dynamic values not stored in the
reputation system but derived from the ratings stored in the
system on the basis of a selected aggregation function during
the matching procedure. There are several possibilities to
aggregate ratings to reputation values. For convenience, the
ones depicted in the figure are exactly those that are needed
to evaluate the given requirements specification.

After the required reputation values considering all re-
quested restrictions have been determined, a simple exact
matching of each condition is a numerical comparison. We
refer to this approach as a Traditional Matching Approach.
For example, for ImagePro1, c1 evaluates to true because
the overall reputation value can be calculated on the basis
of 300 ratings and turns out to be 4.5 (cf. the first row
of the reputation system depicted in Figure 1). In contrast,
PicProcessor can already be discarded as the overall
reputation is only 3.35. As shown in this example, an exact
matching approach requires perfect information (e.g., a high
number of ratings) as well as precise conditions given by
the requester. In the remainder of this paper, we explain
why this is an unrealistic assumption and how we can deal
with incomplete information as well as imprecise requirements
using fuzzy matching techniques.

C. Fuzziness in Service Matching

As already mentioned in the introduction, service match-
ing is affected by various types of uncertainty, imprecision,
and incompleteness—subsequently subsumed under the notion
of “fuzziness” in a broad sense—of the information being
involved and the data being processed. In [61], we distin-
guished three possible sources of fuzziness in service match-
ing: the requester, the provider, and the matching algorithm.
Requester-induced fuzziness is brought by the requirements
specification and, moreover, is caused by the graded nature

of the requester’s satisfaction. In contrast to this, provider-
induced fuzziness is due to a lack of information about service
properties. Finally, algorithm-induced fuzziness (which is less
relevant for this paper) might be caused by approximate com-
putations and heuristics used in (computationally intractable)
matching algorithms.

Interestingly, the distinction between different sources of
fuzziness goes hand in hand with a distinction between differ-
ent types of fuzziness:

• Vagueness: Requirements on services are often specified
vaguely (e.g., using natural language expressions such as
“close to 4 stars”). In our examples from Section II-A
such a soft threshold is denoted by v. Such vague require-
ments are not immediately amenable to computational
processing. The concrete meaning of such expressions
can be captured by fuzzy sets. Modeling a linguistic
expression in terms of a so-called membership function
(i.e., a precise mathematical object) is sometimes referred
to as a process of “precisiation” [92].

• Gradedness: The vagueness of a specification is in direct
correspondence with the gradedness of a requester’s
satisfaction. Typically, a requester will not only distin-
guish between good and bad services. Instead, since a
service can match the requirements to some degree, the
requester can be partially satisfied with a service. For
example, requesters are often tolerant with regard to slight
deviations from the target. A requester demanding an
average reputation of 4 stars might also be satisfied with
a service having a reputation of 3.95, at least to some
extent. Again, gradedness is naturally captured by the
membership function of a fuzzy set, which can assume
intermediate values between 0 (complete dissatisfaction)
and 1 (full satisfaction). In the context of the matching
problem, the fuzzy set will then serve as a soft constraint.

• Uncertainty, partial ignorance: In many cases, service
providers do not offer precise information about a service,
either because of business interests or because details
are difficult to determine. For example, when matching
data with respect to the reputation of a service, provider-
induced fuzziness occurs particularly for new services
that got only few ratings so far. Alternatively, ratings
may be lacking because of the unrateability of a service
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that has only been used as part of a composition and is
not directly visible to the rater [17]. All in all, there are
various reasons for why properties of a service can be
affected by uncertainty or, more specifically, partial ig-
norance. As a consequence of missing information about
a service, the matching procedure becomes uncertain.
However, the user may not be aware of the fact that the
returned matching result is unreliable because it has been
calculated on the basis of missing information.

• Approximations: As already noted, algorithm-induced
fuzziness might be caused by matching algorithms that
apply approximations or other kinds of relaxations or
heuristics. The purpose is to keep the matching process
efficient. Like incomplete information, approximations
can lead to uncertainty regarding the computed matching
results.

As a consequence of induced fuzziness, matching ap-
proaches may deliver adulterated matching results that do not
notify the users about the induced fuzziness. This leads to an
unassessable risk of false positives (mismatching services in-
correctly determined as good matches) or false negatives (well
matching services incorrectly determined as mismatches). For
example, if a matching approach delivers “50%” as a matching
result, this may have very different meanings. In particular, it
could mean (a) the service fully matches half of the require-
ments specification and fully mismatches the other half, (b)
the service matches all parts of the specifications moderately,
or (c) the degree of matching is completely uncertain because
detailed information is missing. Thus, while the “fuzziness”
of the match refers to graded user satisfaction in Cases (a)
and (b), it is due to uncertainty and incomplete information in
Case (c). As explained in the following sections, our approach
carefully distinguishes between these sources and makes them
transparent to the user.

D. Requirements

From the above mentioned foundations, we can derive four
requirements for an appropriate fuzzy matching approach in
order to cope with induced fuzziness:

(R1) Deliver Unadulterated Matching Results: Even though
fuzziness might have been introduced into the matching
procedure, an appropriate matching approach should de-
liver matching results that are not misleading. This means,
the delivered matching results should not lead to false
positives and false negatives.

(R2) Inform about Extent of Fuzziness: In order to assess
whether a user can trust a returned matching result, the
user needs to know how much fuzziness has been in-
duced. For example, if the induced fuzziness is very high,
a user may decide to not take the risk and consider other
services that may be worse matches. Information about
the extent of induced fuzziness could be represented nu-
merically (e.g., “Fuzziness of ImagePro1 is 0.1; Fuzzi-
ness of PicProcessor is 0.3”) or using qualitative terms
(e.g., “Fuzziness within the result for ImagePro1 is low;

Fuzziness within the result for PicProcessor is high”).
How much fuzziness can be accepted depends on the
specific user’s risk aversion. Fulfilling R2 supports the
fulfillment of R1.

(R3) Inform about Fuzziness Sources: A fuzzy matching
approach has to distinguish between different fuzziness
sources (e.g., requester-induced fuzziness and provider-
induced fuzziness). Based on this, the user can be in-
formed about fuzziness sources. Knowing the source of
fuzziness that has been induced in a matching result, may
enable the user to undertake potential countermeasures,
if needed. For example, in the presence of provider-
induced fuzziness, the provider could check whether she
can and should provide more detailed information bout
the provided service. An adequate output could be: “The
result for ImagePro1 contains provider-induced
fuzziness”.

(R4) Handle Different Fuzziness Types: In order to handle
fuzziness during service matching appropriately, differ-
ent fuzziness types need to be distinguished during the
matching procedure (e.g., vagueness, gradedness, and un-
certainty). This distinction is important as different types
may have different consequences. In particular, in contrast
to gradedness, uncertainty may become a problem to the
requester when interpreting the delivered matching result.
Furthermore, not every calculus is able to model all these
fuzziness types. For example, probability theory does not
distinguish between uncertainty and gradedness, as we
will discuss in more detail in Section IV.

In general, information on fuzziness sources influencing the
matching result and the extent of this influence gives the
requesters and providers more insights about the matching
results. Based on informative matching results that reflect
fuzziness instead of concealing it, users can make more
informed decisions. In some cases, the users may even be able
to overcome some fuzziness occurrences by different means
(e.g., adapting the requirements specification or delivering
more information at the provider’s side).

III. RELATED WORK

We surveyed the related work of fuzzy service matching
according to the guidelines for systematic literature reviews by
Kitchenham et al. [12], [35] due to the high number of papers
related to service matching that has been published [64].
All details about the procedure for selecting and performing
reviews can be found on our paper’s website [63]. Based on
this, we selected the 31 most related approaches and discuss
them in the following.

In particular, we reviewed the selected publications with re-
spect to three comparison criteria that reflect the requirements
described in Section II-D:

• Matching Result Format (see R1 and R2) indi-
cates how comprehensive the matching results returned
by the described matching approach are and to which
extent they reflect induced fuzziness. Possible values
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include “score” (one numerical value out of a continu-
ous range of values, e.g., percentage values), “degree”
(one result out of a fixed number of result classes),
“boolean” (e.g., “select/reject” results).

• Considered Fuzziness Types (see R4) answers
the question, which of the introduced fuzziness types have
been considered in the described matching approach. Pos-
sible values are Gradedness (“Gra”), Vagueness (“Vag”),
Uncertainty (“Unc”), and Approximations (“App”).

• Considered Fuzziness Sources (see R3) an-
swers the question, which of the introduced fuzziness
sources have been considered in the described match-
ing approach. Possible values are Requester (“Req”),
Provider (“Prov”), and Algorithm (“Algo”).

Table I shows the comparison. From this comparison, we
can conclude that related approaches are limited with respect
to multiple issues that we discuss in the following.

a) Differentiation of Several Fuzziness Types and
Sources: During our reviews, we noticed that the many
approaches motivated fuzzy matching by the case that exact
matching approaches do not find any service because no
service description matches the requirements exactly but only
partially (e.g., [45]). By introducing gradual matching results,
they want to get rid of false negatives. These motivations
indicate that these approaches have another understanding of
fuzzy matching than we do: they only consider gradedness
but do not target uncertainty. Thus, these approaches are
not interested in reflecting further types of fuzziness in their
matching results.

The same holds for approaches working with approxima-
tions during matching. These approaches potentially lead to
uncertainty, but this fact is not visible to the user (e.g., [5]).
All in all, no approach explicitly addressed uncertainty.

Furthermore, existing approaches do not explicitly dis-
tinguish between fuzziness sources. In many approaches,
provider-induced as well as requester-induced fuzziness
emerges, however, most of the approaches do not treat them
in distinct ways, which again leads to adulterated matching
results.

Only Bacciu et al. [4], [5] mention that fuzziness on the
requester side is more about preferences, while fuzziness on
the provider side is more about approximate estimates and
that both can be specified using fuzzy sets. This is similar
to the principles our fuzzy-logic based approach follows.
Furthermore, they emphasize that their approach works with
fuzzy numbers throughout the whole process. Unlike other ap-
proaches that start with fuzzy requirements to be transformed
into crisp values for determining the matching result, Bacciu
et al. only transform their result into a crisp result at the very
end. This idea comes closest to our idea of fuzzy matching;
however, we keep the fuzzy values even longer as we reflect
the fuzziness also within the matching result. The matching
results determined in Bacciu et al.’s approach neither reflect
the fuzziness (uncertainty) that is left, nor do they leverage
the distinction of different fuzziness types.

Furthermore, in their approach, Bacciu et al. [4], [5] con-
sider a confidence level. This is a value that can be specified
in order to indicate a probability that the provided specifica-
tion accurately reflects the reality. This refers to an inherent
uncertainty within the provider’s specification. Moreover, they
use a proximity-based index in order to assess the uncertainty
of the similarity between two fuzzy sets. This comes close
to our approach of quantifying the difference between n and
p. However, as they still apply approximations within their
matching algorithm that are not reflected within the matching
result, the results are still adulterated.

In [45], the user is able to specify fuzzy missing strategies
that encode what to do in general when a service specification
does not provide some kind of information that has been
specified in the requirements specification. Possible strategies
are to ignore the missing information or to assume to a
certain degree that a requirement will be met by a service
not specifying it. These additional configuration parameters
increase the user’s awareness of possible fuzziness within the
matching result and gives her some control. However, there is
still no information whether fuzziness actually emerged during
one specific matching process and to which extent.

b) Expressiveness of Matching Results: As can be seen
in the table, most of the related approaches deliver gradual
result scores. However, for us, a gradual result is not enough.
The reason is that, as explained earlier, there is a difference
between “a service matches 50%” and “we are 50% sure that a
service matches”. Existing approaches either only consider the
first case or they mix both semantics within one value, leaving
the user misinformed. For example, [93] treats missing speci-
fications as a mismatch, mixing mismatches with uncertainty.

In [66], the matching approach results in one of four differ-
ent reuse decisions that denote to which extent the matched
component has to be adapted. This can be explained by the
fact that this approach comes from the domain of component-
based software engineering and not from service-oriented
computing. They assume that the component’s implementation
can be adapted after discovery. For services, this is not true,
as the user typically does not have access to the service’s
implementation. Adaptations are only possible as non-invasive
extensions (e.g., [55]). Sora and Todinca’s approach [72],
[71] provides either “select” or “reject” combined with either
“weak” or “strong” as an output. The latter addition helps to
assess the certainty of the result, but only to a limited extent.
The reason for the uncertainty, i.e., its source, as well as its
extent is not known to the user.

We also found that approaches based on fuzzy logic usually
transform into a crisp matching result after having matched
based on fuzzy sets (the approach by Bacciu et al. [4], [5]
discussed above being one exception). This transformation
leads to a loss of information. In particular, the crisp matching
result does not reflect fuzziness anymore.

Within our selected set of publications, we did not find
any approach that returns interval matching results, or other
result formats of a similar expressiveness as our possibility-
necessity intervals that will be introduced later. In general,
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TABLE I
COMPARISON OF FUZZY MATCHING APPROACHES

R1, R2 R4 R3
(Matching Result (Considered (Considered

Approach Format) Fuzziness Types) Fuzziness Sources)
Almulla et al. [1] – (score) ∼ (Gra, Vag) – (Req)

Bacciu et al. [4], [5] – (score) ∼ (Gra, Vag, App) + (Req, Prov, Algo)
Bai et al. [6], [7], [51], [52] – (score) – (App) – (Algo)

Chao et al. [13], [31], [32], [33], [49], [48] – (score) – (Vag) – (Req)
Constantinescu et al. [15] – (score) – (App) – (Algo)

Cock et al. [18] – (score) ∼ (Vag, Gra) – (Req)
Cooper et al. [16] – (score) – (Vag) ∼ (Req, Prov)

Fenza et al. [27] ∼ (multiple scores) – (App) ∼ (Req, Algo)
Jeong et al. [34] – (score) – (App) – (Algo)

Klusch et al. [38], [39], [42] – (degree) – (App) – (Algo)
Klusch, Kapahnke [41], [40] – (degree) – (App) – (Algo)

Küster et al. [43], [44], [45], [46] – (score) ∼ (Vag, Gra) ∼ (Req, Prov)
Liu et al. [53] – (score) ∼ (Vag, Gra) – (Req)

Liang et al. [47] – (score) – (App) – (Algo)
Ma et al. [54] – (score) – (App) – (Algo)

Pantiniotakis et al. [58] – (score) – (Vag) ∼ (Req, Prov)
Peng et al. [59] – – (boolean) – (Vag) ∼ (Req, Prov)

Qu et al. [65] – (score) – (Vag) – (Prov)
Rao, Sarma [66] ∼ (reuse decisions) – (Vag) – (Prov)

Schönfisch et al. [68] – – (boolean) – (App) – (Algo)
Sangers et al. [67] – (score) – (App) – (Algo)

Şora, Todinca [72], [71] – (weak/strong select/reject) – (Vag) ∼ (Req, Prov)
Sycara et al. [73] – (score) – (App) – (Algo)
Torres et al. [77] – (score) – (Vag) – (Req)

Toninelli et al. [76] – (score) – (App) – (Algo)
Toch et al. [75] – (score) – (App) – (Algo)

Thakker et al. [74] – (score) – (App) – (Algo)
Wang et al. [84] – (score) – (Vag) ∼ (Req, Prov)

Wang et al. [85], [86] – (score) – (Vag) ∼ (Req, Prov)
Xiong, Fan [88] – (score) – (Vag) ∼ (Req, Prov)
Zilci et al. [93] – (score) – (Vag) ∼ (Req, Prov)

Approach proposed in this paper + (n-p-interval) ∼/+ (Vag, Gra, Unc) ∼ (Req, Prov)

most of the approaches hardly mentioned the result format
and its properties at all.

c) Fuzziness in Related Software Engineering Disci-
plines: Since only few service matching approaches explicitly
deal with fuzziness in terms of uncertainty, we also took
into account literature from related software engineering dis-
ciplines.

For example, in his position paper [29], David Garlan lists
several sources of uncertainty in software engineering. These
sources fit well to our service matching problem. For example,
we also have (a) the human involved in both specifying
services and requirements as well as in making the final
decisions before acquiring a service based on the matching
results, (b) different platforms where services can be deployed,
ranging from the cloud centers to mobile devices, and (c) due
to the high competition developing in global markets, service
offers and requirements are expected to change often. Though
Garlan does not provide any concrete solutions applicable
to our domain, he repeatedly emphasizes that we should
not “maintain the illusion of certainty” and that “uncertainty
needs to be considered as a first-class concern to be dealt

with systematically” which is in line with our idea of more
expressive matching results.

Esfahani et al. [25], [26] take some of these sources
up again and extend the list with further sources. In their
approach POISED [25], [26], estimates of uncertainty in
self-adaptation problems are integrated into a possibilistic
analysis in order to make better adaptation decisions within
the scope of self-adaptive systems. Similar to our approach,
they work with lower and upper bounds to estimate the range
of the uncertainty. In general, their goals are in line with
ours: identifying the sources of uncertainty and estimating the
extent of uncertainty. However, in contrast to the domain of
making adaptation decision, the domain of service matching,
on the one hand, requires a more fine-grained classification of
sources (e.g., requester-induced fuzziness vs. provider-induced
fuzziness as a refinement of “uncertainty due to human in
the loop”), while, on the other hand, other sources are less
relevant (e.g., “uncertainty due to noise”). Furthermore, our
approach incorporates different kinds of uncertain information,
i.e., statistical information on the provider’s side and vague
information on the requester side.
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Based on [83], Perez-Palacin and Mirandola [60] con-
structed a classification of uncertainty in software models.
This is related to the requester-induced and provider induced
fuzziness as our specifications are also software models to
a certain extent. Three of the five orders of uncertainty
listed there can be directly transferred to fuzziness in service
matching:

• 0th order of uncertainty: The lack of uncertainty, i.e., the
user knows exactly how well a service matches.

• 1st order of uncertainty: The lack of knowledge (i.e.,
known uncertainty), i.e., the user knows that she does
not know exactly how well a service matches.

• 2nd order of uncertainty: The lack of knowledge and the
lack of awareness, i.e., the user does not know that she
does not know how well a service matches.

The 0th order represents the ideal case. However, this case
cannot always be achieved due to the reasons explained above.
We claim that existing (fuzzy) service matching approaches
lead to the 2nd order of uncertainty as uncertainty is not
reflected within the matching result and the user is lead
to believe in a potentially adulterated matching result. By
estimating and presenting the extent of induced uncertainty
to the user, our fuzzy matching concepts reduce the order
of induced uncertainty from the 2nd order to the 1st. This
enables the user to cope with the known uncertainty and to
assess its risks. Furthermore, the user may even get to the 0th
order by eliminating the known uncertainty. Reaching the 1st
order is essential to enable strategies to completely eliminate
uncertainty. As a consequence, this also means eliminating
uncertainty of Order 3 (uncertainty about the lack of a process
to find out the lack of awareness of uncertainty), while Order 4
(the lack of knowledge about the orders of uncertainty) is of
no concern for the user of our approach.

Furthermore, approaches related to requirements specifi-
cation for self-adaptive systems under consideration of un-
certainty (e.g., RELAX [87] and FLAGS [8]) are related to
our approach. Both approaches are based on temporal fuzzy
logic. For example, RELAX allows to address uncertainty in
requirements specifications for adaptive systems. It deals with
two key sources of uncertainty: environmental changes of a
system’s execution environment and behavioral changes at run-
time. RELAX is a potential language for specifying behavioral
requirements in the presence of requester-induced fuzziness.
However, it does not address how those specifications can
be handled during automated matching and how matching
results could look like in the presence of relaxed requirements.
Furthermore, these approaches focus on internal behavioral
details (e.g., real-time constraints), that can be specified with
temporal logic. Thus, it requires deeper knowledge of the
system’s internal behavior, which we typically do not have
when working with service-based systems, where only the
interface descriptions are publicly visible.

In reliability analysis (e.g., [14], [89]), models like fault
trees, Markov chains, and stochastic Petri nets are utilized
to predict the reliability of a software system. These models

contain parameters obtained from uncertain field data [89].
Yin et al. [89] discuss three ways to present this uncertainty:
bounds, confidence intervals, and probability distributions.
The confidence intervals are comparable to the n-p-intervals
we will introduce in the following sections. However, the
presented analytical approaches are limited to special kinds
of models and parameter distributions; they are hard to gen-
eralize. For example, they are not applicable to our reputation
specifications. Again, the considered models require internal
information about a system (e.g., failure rate and repair rate)
that we typically do not have within the domain of deployed
services whose internals are not exposed to potential cus-
tomers.

d) Summary of Shortcomings: To sum up, related work
incorporates fuzziness to a limited extent. In particular, related
approaches (a) neither distinguish between fuzziness types like
gradedness and uncertainty, nor between fuzziness sources like
requester and provider. In addition, related approaches (b)
do not address the presentation and the semantics of fuzzy
matching results. These shortcomings lead to the fact that
the matching results returned to users of these approaches are
deceptive. They do not allow to assess risks that are caused
by matching procedures being processed on imperfect inputs
and algorithms. Furthermore, the user does not get feedback
that the results are deceptive and, thus, has no opportunity to
improve this situation.

As opposed to this, the last line of Table I shows that the
approach presented in this paper addresses these issues. On the
one hand, it delivers informative matching results in the form
of n-p-intervals (explained in Section V). On the other hand,
it considers both vagueness and gradedness on the requester’s
side as well as uncertainty on the provider’s side. An extension
of our approach to deal with algorithm-induced fuzziness in
the form of approximations is planned for future work. This
extension will extend the already existing approaches once
more, with a focus on an informative matching result that
does not conceal fuzziness, but communicates it to the user
for supporting the decision to be made based on matching
results.

IV. FOUNDATIONS OF FUZZY MODELING

In the following, we discuss foundations of fuzzy sets and
possibility theory our approach is based on.

A. The Notion of a Fuzzy Set

A fuzzy subset A of a reference set U is identified by a
so-called membership function, often denoted µA, which is
a generalization of the characteristic function of an ordinary
subset [90]. For each element x ∈ U , this function specifies
the degree of membership of x in the fuzzy set. Usually,
membership degrees µA(x) are taken from the unit interval
[0, 1], i.e., a membership function is a mapping U −→ [0, 1].
We denote the set of fuzzy subsets of U by F(U).

Fuzzy sets formalize the idea of graded membership, i.e.,
the idea that an element can belong “more or less” to a
set. Consequently, a fuzzy set allows for modeling concepts
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with non-sharp boundaries. Consider the set of services with
good reputation as an example. Is it reasonable to say that an
average rating of at least 3.7 is good and 3.6 is not good?
In fact, any sharp boundary in the form of a threshold on
the average rating will appear rather arbitrary. Modeling the
concept as a fuzzy set A, it becomes possible to express grades
such as: a service with rating 4.5 is completely fulfilling the
requirements (µA(4.5) = 1), a rating of 3.7 is “more or less”
good (µA(3.7) = 1/2, say), and 2.5 is definitely not good
(µA(2.5) = 0).

Fuzzy sets are often associated with natural language ex-
pressions and, as already mentioned, are used to capture the
meaning of such expressions in a precise, mathematical form.
Thus, they conveniently act as a human-machine interface
between a symbolic and a numeric level of modeling. More-
over, a fuzzy set can have different semantic interpretations
[21]. In particular, the membership degrees of a fuzzy set
can be interpreted in terms of preference and uncertainty.
For example, consider the fuzzy set A of services with “high
reputation”, formalized in terms of a membership function µA
on U = [0, 5]. Being provided as a requirement by a requester,
A can be interpreted in terms of preference: µA(x) is the
degree to which the requester is satisfied with a service having
an average rating of x. As opposed to this, if “high” is given by
the provider as (imprecise) information about the reputation,
A is interpreted in terms of uncertainty: µA(x) is the degree to
which x is considered possible as the true value of the average
rating. This interpretation will be discussed in more detail in
Section IV-C below.

B. Fuzzy Logic

In conjunction with generalized logical (set-theoretical)
operators, the concept of a fuzzy set can be developed into
a generalized set theory, which in turn provides the basis
for generalizing theories in different branches of (pure and
applied) mathematics as well as fuzzy set-based approaches
to intelligent systems design. The term “fuzzy logic” is com-
monly used as an umbrella term for a collection of methods,
tools, and techniques for constructing systems of that kind.

To operate with fuzzy sets in a formal way, fuzzy logic
offers generalized set-theoretical or logical connectives (like
in the classical case, there is a close correspondence between
set theory and logic). Especially important in this regard is
a class of operators called triangular norms or t-norms for
short [37]. A t-norm > is a [0, 1] × [0, 1] −→ [0, 1] mapping
which is associative, commutative, monotonically increasing
(in both arguments), and which satisfies the boundary con-
ditions >(α, 0) = 0 and >(α, 1) = α for all 0 ≤ α ≤
1. Well-known examples of t-norms include the minimum
(α, β) 7→ min(α, β) and the product (α, β) 7→ αβ. A t-norm
naturally qualifies as a generalized logical conjunction. More-
over, it can be used to define the intersection of fuzzy subsets
A,B ∈ F(U) as follows: µA∩B(x) = >(µA(x), µB(x)) for
all x ∈ U . Likewise, the standard negation operator α 7→ 1−α
can be used to model the set-theoretical complementation, i.e.,

the membership function of the complement Ā = U \A of A
in U : µĀ(x) = 1− µA(x) for all x ∈ U .

C. Possibility Theory

Possibility theory is a general uncertainty calculus. Al-
though it could in principle be studied independently of fuzzy
logic, there is a close connection between both theories,
because possibility distributions are often derived from fuzzy
sets by interpreting membership degrees in terms of degrees of
possibility [91]. Formally, a possibility distribution π is again
a mapping U −→ [0, 1]. A distribution of that kind induces a
possibility measure Π : 2U −→ [0, 1], which is defined by the
supremum, i.e., the least upper bound, of π(u):

Π(A) = sup
u∈A

π(u) (1)

for all A ⊆ U . The measure Π captures uncertain information
about a true (but unknown) value u0 ∈ U . For each subset
A ⊆ U , Π(A) is the degree of plausibility that u0 ∈ A.

A possibility distribution Π can be interpreted as a compact
representation of a family of probability measures, namely
all measures P that are upper-bounded by Π (in the sense
that P (A) ≤ Π(A) for all measurable A ⊆ U ). Thus,
a lack of information (ignorance) can arguably be captured
more adequately by means of possibility than by probability
distributions. In particular, complete ignorance is adequately
formalized by the distribution π ≡ 1. For example, if nothing
is known about the true reputation u0 of a service, for
example because the service is completely new, then each
value x ∈ U = [0, 5] appears to be fully plausible. In
probability theory, this situation could be modeled by the
uniform distribution with density p(x) ≡ 1/5. This is the same
distribution, however, that also models perfect knowledge
about the equal probability of each value (e.g., derived from
a very large number of service ratings). Thus, in standard
probability, complete ignorance cannot be distinguished from
perfect (probabilistic) knowledge in this situation.

The limited expressivity of probability measures is due to
their self-reflexivity: P (A) = 1 − P (U \ A) for all A ⊆ U .
Therefore, it is impossible to express that A is plausible
(i.e., probable) without saying that the complement of A is
implausible. In possibility theory, implausibility is captured
by a second measure, a so-called necessity measure N , which
is dual to Π in the sense that N(A) = 1− Π(U \ A). Put in
words, a subset A is considered necessary to the same extent
to which the complement of A is considered implausible. One
easily verifies that N(A) ≤ Π(A) for all A ⊆ U .

The domain of possibility/necessity measures can be ex-
tended from subsets A ⊆ U to fuzzy subsets A ∈ F(U):

Π(A) = supx∈U min
(
π(x), µA(x)

)
, (2)

N(A) = 1− supx∈U min
(
π(x), 1− µA(x)

)
. (3)

V. FUZZY REPUTATION MATCHING

Our main idea is to enable matching despite fuzziness
induced into the matching process by imprecise or incomplete
specifications, as explained in Section II-C. In particular, the
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Fig. 2. Fuzzy Reputation Matching Procedure

matching approach should return not only the matching result
as an objective measure of how much a service specification
satisfies given requirements, but also reflect how much fuzzi-
ness has been induced. As a benefit, the requester can make
a more informed decision. We can expect that, in most cases,
requesters will prefer services with good matching results that
come with a low amount of fuzziness. However, the amount
of fuzziness and the degree of the matching result may form
a trade-off, as discussed later.

We explain our approach on the basis of the example
requirements depicted in Figure 1(a). These requirements
cover requester-induced fuzziness as well as provider-induced
fuzziness. Requester-induced fuzziness occurs in c2, c4, and
c5, indicated by the soft threshold. Provider-induced fuzziness
occurs due to the frequentist nature of the information, i.e.,
the reputation data. The more ratings available, the lower is
the fuzziness. We discuss this issue in detail in the following
sections.

A. Overview

Our fuzzy reputation matching approach is based on fuzzy
sets and possibility theory. Figure 2 visualizes an overview
of the procedure for a concrete example. Please note that
this example shows only extracts—the steps iterate over all
conditions that are part of the requirements specification. In
general, the procedure is performed for each provided service
to be considered (e.g., each provided service that matches
the functional requirements). The procedure takes the require-
ments specification and all required ratings that are available
for a provided service to be matched as an input. There are
three main steps that are performed: 1. Translation into
Fuzzy Sets, 2. calculation of Matching results, and 3.
Aggregation. A matching result informing not only about
the quality of the match but also about the induced fuzziness
is returned as an output.

B. Step 1: Translation into Fuzzy Sets

In order to perform the main matching algorithm, the
inputs need to be transformed into fuzzy sets. Thus, both
the requirements as well as the reputation value based on
the available ratings of a service need to be modeled as
membership functions.

The benefit of a translation into fuzzy sets is that this
enables us to use a coherent mathematical framework that
is able to cope with fuzziness and uncertainty. Furthermore,
this approach can be leveraged to address QoS-drift, i.e.,

perception of numerical values for non-functional properties
due to a change in the domain knowledge [78].

1) Creation of fuzzy sets from requirements: Fuzzy require-
ments specifications, i.e., conditions containing a soft thresh-
old, are transformed into membership functions denoting fuzzy
sets. All other requirements are transformed into conventional
sets (which are special cases of fuzzy sets with {0, 1}-valued
membership functions).

Figure 3 depicts the sets created from Conditions c1 – c5
from Figure 1(a) in green color. The x-axes denote reputation
values in a scale from 0 to 5, while the y-axes represent the
membership as a number between 0 and 1. For example, the
lower threshold for the requested reputation in c1 is 4. Thus,
the membership is 0 from 0 to 4 and 1 between 4 and 5.
This means that, if a service’s reputation value is higher than
4, it matches completely. As there are only “hard” transitions
between the membership of 0 and the membership of 1, we
speak of a “crisp” set. For the other hard constraint, c3, the
threshold is 3.

Requirements c2, c4, and c5 are transformed into mem-
bership functions denoting fuzzy sets as there are no hard,
but soft thresholds. This is a process of precisiation, in which
membership functions are assigned to symbolic expressions.
To this end, we make use of modeling techniques that have
been developed in the field of fuzzy logic, including math-
ematical tools such as modifier functions, linguistic hedges,
and generalized quantifiers. Thus, we specify a set of rules
that define how to turn expressions into membership functions.
This includes the rule to turn an expression v x0 into a fuzzy
set with membership function x 7→ min(max(x−x0+1, 0), 1),
as shown by the transformation results depicted in Figure 3.
For example, the function for transforming the expression
RepRT (Service) v 4 from c2 is x 7→ min(max(x−3, 0), 1)
because x0 = 4.

Refering to the fuzziness types introduced in Section II-C,
vagueness is reflected within the fuzzy sets by the size of
the set’s gradient, i.e., the interval defining “fuzzy part”.
Conversely, gradedness rather refers to the location of this
gradient (e.g., if it is closer to the right or closer to the
left), depending on the threshold given with the requirements
specification.

2) Creation of fuzzy sets from ratings: The case where
requirements are specified on reputation values derived from
ratings is interesting for several reasons, notably as it involves
both vagueness and (frequentist) statistical information. In
general, the requester will be interested in a characteristic
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value like the expectation, i.e., the average rating of a service,
and specify a soft constraint in the form of a fuzzy set A on
this value; for example, the mean rating should be v 4 in c2.

In practice, the true expectation m is unknown; instead,
only an estimation m̂ of this value is available, namely the
arithmetic mean of a finite set of ratings. There are two
problems to be considered. First, we need to characterize the
uncertainty about m or, stated differently, the reliability of the
average m̂, in a proper way. To this end, we make use of
bootstrapping, a statistical resampling technique that allows
estimating a probability distribution for the expectation [22].
The larger the sample size, the more peaked this probability
density function p(·) will be around the average m̂. In partic-
ular, the distribution will provide an idea of the variance of
the estimation.

Second, the information should be represented within our
formal framework, so as to make it amenable to further
processing. Thus, the probability function p(·) should actually
be represented in the form of a possibility distribution. To
this end, we adopt the interpretation of possibility as upper
probability and apply an established probability-possibility
transformation [20]:

πm(x) = sup
{
α ∈ [0, 1] |x ∈ C1−α

}
, (4)

where C1−α is the 1−α confidence interval derived from the
distribution p(·), i.e., the shortest interval around m̂ covering
a probability mass of 1− α.

a) Special cases: There are two special cases of the
above problem that allow for a simplified specification of πm:
a very small and a very large sample of ratings. If only a
few ratings are available (e.g., only 2 or 3, in which case
bootstrapping will hardly make sense), or perhaps even no
rating at all, it might be best to define πm ≡ 1, thereby
reflecting complete ignorance about m. In contrast, if the
number of ratings is very large, m̂ will approximate m
extremely well, so that this value can be assumed to be known
with sufficient certainty; for example, if there are more than
1,000 ratings for the service ImagePro1 in c1, with an
average of m̂ = 4.5. This value will then be extremely close to
the true expectation. Then, we pretend to be completely certain
by modeling information about m in terms of the possibility
distribution πm with πm(x) = 1 if x = m̂ and πm(x) = 0 if
x 6= m̂.

b) Additional restrictions: In general, the sample size
will directly influence the specificity of the possibility distri-
bution πm. The more ratings are available, the more peaked
πm will be around the average m̂. Thus, the reliability of
the information about m is reflected by πm in a proper way.
The requester may nevertheless be interested in specifying an
extra restriction on the sample size using a fuzzy term (like
“many” in c2 and c3). Again, requirements of that kind can be
formalized in terms of a soft constraint A with the membership
function µA. This constraint is aggregated with the constraint
about the reputation value using a conjunctive operator based
on a t-norm (e.g., the minimum). The sample size itself is
typically known precisely and, therefore, can be represented

in terms of a possibility distribution πs that yields a value of
1 for the sample size and 0 otherwise.

C. Step 2: Matching

In the previous section, we have explained how each of
the requester’s conditions c is translated into a corresponding
fuzzy set Ac with the membership function µAc

, effectively
representing a soft constraint that needs to be fulfilled. Like-
wise, we have seen how information Bc about a service can
be formalized in terms of a possibility distribution πBc . The
latter might be a single-point distribution, in the case where
precise information is offered by the provider, but may also
reflect a certain level of uncertainty about the true value. In
our running example, it is derived from user ratings.

Now, matching the requirements with information about
a service comes down to comparing Ac and Bc. What can
we say about the degree of satisfaction of the requester? As
explained in Section IV-C, this question can be answered by
computing the possibility and the necessity of the requirement
Ac under the distribution πBc

according to Equation 2 and
Equation 3, respectively:

ΠBc
(Ac) = supx∈U min

(
πBc

(x), µAc
(x)

)
, (5)

NBc
(Ac) = 1− supx∈U min

(
πBc

(x), 1− µAc
(x)

)
. (6)

Thus, the satisfaction of the requester will be characterized by
two values or, say, an interval [n, p] ⊆ [0, 1] such that

nc = NBc
(Ac) ≤ ΠBc

(Ac) = pc . (7)

As an illustration, suppose Ac and Bc to be standard subsets.
In that case, [nc, pc] = [0, 0] if Ac ∩ Bc = ∅ (the requester
is certainly not satisfied), [nc, pc] = [1, 1] if Bc ⊆ Ac (the
requester is certainly satisfied), and [nc, pc] = [0, 1] otherwise
(the requester is possibly but not necessarily satisfied). In the
more general case where either Ac or Bc are fuzzy, nc and pc
may also assume intermediate values.

The necessity and possibility degree in Equation 7 can be
interpreted as a lower and an upper bound on the satisfaction
of the requester, respectively: nc is the degree to which the
requester is necessarily satisfied, and pc the degree to which
she is possibly satisfied. Moreover, the length of the interval
reflects the level of ignorance of the service properties. Thus, if
this uncertainty is reduced because more precise information is
acquired, the interval will shrink. In the special case where the
provider offers precise information, the interval degenerates
to a point (reflecting certainty about the satisfaction of the
requester).

Illustration: In Figure 3, the (soft) constraints Ac specified
by the requester are depicted with a shadowed background
indicating the region where a requirement is satisfied. Further-
more, the possibility distributions informing about properties
Bc of the services ImagePro1 and PicProcessor are
depicted.

As for the matching of requirements and properties, some
of the results are easy to recognize. For example, we have
a full match (Bc ⊆ Ac), and therefore nc = pc = 1,
for ImagePro1 in the cases of c1, and c4, and for
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Fig. 3. Example Matching Results

PicProcessor in the case of c3. Likewise, we have a full
mismatch (Bc ∩ Ac = ∅), and therefore nc = pc = 0, for
PicProcessor in the cases of c1 and c2.

The other cases are partial or fuzzy matches. More specif-
ically, the necessity-possibility intervals [nc, pc] are obtained
according to Equations 5–6. The complete results in the form
of these intervals are depicted in Table 1.

condition ImagePro1 PicProcessor
c1 [1, 1] [0, 0]
c2 [0.5, 0.5] [0, 0]
c3 [0, 1] [1, 1]
c4 [1, 1] [0, 0.5]
c5 [0.286, 0.615] [0.286, 0.615]

TABLE II
RESULTS FOR THE SETS IN FIGURE 3

The most certain results of the above matching process are
[n, p] = [0, 0] and [n, p] = [1, 1]. In both cases, the result is
precise and unambiguous because we have a complete match
(with full satisfaction) and a complete mismatch (with full
dissatisfaction). In practice, the result will often be more fuzzy,
essentially for two reasons:

• First, there might be uncertainty about the requester’s
satisfaction, i.e., the interval [n, p] will get wider.

• Second, the result can be more ambiguous, in the sense
that the interval moves closer to the middle point 1/2;
in that case, we neither have a clear match nor a clear
mismatch, but rather something in-between.

As already mentioned, uncertainty about the true satisfac-
tion, which is naturally quantified in terms of the difference
p − n, is closely connected with uncertainty on the side of
the provider. In fact, the latter is a necessary requirement. If
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Fig. 4. Services associated with degrees n/p to which they necessar-
ily/possibly meet the requirements specification

the information about a service is precise, then n = p. As
for the second type of fuzziness in the result, the location of
the interval [n, p] is mainly influenced by the requester: The
more “fuzzily” she specifies her requirements, i.e., the less
clearly she states what she likes and what she dislikes, the
more “mediocre” the result will be, i.e., the closer [n, p] will
be located around the middle point 1/2.

D. Step 3: Aggregation

So far, a service has been evaluated on each of the condi-
tions c1, . . . , cq separately, resulting in corresponding intervals
[nci , pci ]. In order to obtain an overall result, these intervals
need to be aggregated. In the literature, three classes of
aggregation operators are distinguished: conjunctive, disjunc-
tive, and generalized averaging operators [30]. Conjunctive
operators include the class t-norms (cf. Section IV-B); using
an operator of this kind, the aggregated result is high only
if the individual result are high on all conditions. Disjunctive
operators, on the other hand, are fully compensative. There,
a high result on a single requirement is enough to have a
high overall result. Averaging operators, which include the
(weighted) arithmetic mean, are in-between conjunctive and
disjunctive operators.

Recall that nc and pc are interpreted, respectively, as a lower
and upper bound of the requester’s satisfaction on condition
c. Since all aggregation operators AGG are monotonic, the
set of possible degrees of overall satisfaction can be obtained
by aggregating, respectively, the lower bounds and the upper
bounds:

[n, p] =
{

AGG(s1, . . . , sq) | si ∈ [nci , pci ]
}

(8)
=

[
AGG(nc1 , . . . , ncq ), AGG(pc1 , . . . , pcq )

]
In this paper, we apply the arithmetic mean for aggregation,
leaving a deeper study of this choice for future work. The
arithmetic mean is a reasonable choice because, on the one
hand, it does not deliver as extreme results as alternative
operators like the minimum or the maximum would. On the
other hand, we do not need additional information like weights
for the weighted mean that would need to be evaluated, as
well. Nevertheless, we still expect the overall tendencies of
the results to be robust against the choice of the aggregation
operator to a certain degree, i.e., that the resulting data is that
unambiguous such that only slight variations occur due to the
choice of the aggregation operator.

It is important to note that, since the overall evaluation of
a service is given in the form of an interval (Equation 8),
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two services are not necessarily comparable to each other;
instead, one service can dominate another one only in a Pareto
sense (cf. Figure 4). Nevertheless, a total order on services,
if required for futher processing, can be enforced by reducing
intervals to scalars. For example, a simple approach is to map
an interval [n, p] to its risk-aversion-specific reduction r as
follows:

r = αn+ (1− α) p ∈ [0, 1] , (9)

where the parameter α ∈ [0, 1] reflects the risk aversion of the
requester. For α = 1, the requester is completely risk-averse
and fully focuses on the lower bound of a service evaluation.
For α = 0, the user is risk-affine and completely concentrates
on the upper bound. In other words, for a risk-averse user, n
gets the higher weight and for a risk-affine user, p gets the
higher weight. Requesters can decide for a value on the basis
of different factors, including not only their own character
but also the context such as the domain of the service that
they are searching (e.g., if a banking service is searched, the
requester wants not to be very risky), or the size of the queried
market (e.g., if a requester knows that there are many services
provided on the current market that probably fit her interests,
so that she does not need to take risks).

Nevertheless, as depicted in Figure 2, the fuzzy matching
procedure returns the aggregated matching results based on
the interval built by the n and p values. The general extent
of the fuzziness is denoted by the range between n and p.
The n-p-intervals show the important aspect of uncertainty
that is not shown by a scalar because the size of the interval
reflects the extent of induced uncertainty. Thus, these results
can now be used to compare several services with each other
in order to select the most fitting service under consideration
of uncertainty and risk aversion. More concrete examples for
situations where bad decision-making can be prevented due to
the intervals are given in Section VIII.

The design of our matching algorithm leads to the fact that
the size of the n-p-intervals define the extent of provider-
induced fuzziness in terms of uncertainty. This can also be seen
when taking into account the result for c3 depicted in Figure 3
and in Table V-C. There is no requester-induced fuzziness
but—due to the frequentist nature of the reputation data—
the highest amount of uncertainty is induced (the interval is
[0,1]). The requester-induced fuzziness induced within the
requirements specification leads to gradedness and vaguess
that has been reflected within the fuzzy sets as discussed in
Section V-B1. Gradedness is also reflected within the matching
result whenever either n or p take a value inbetween 0 and 1.
By modifying her requirements specification, the requester is
able to move the interval and, thereby, potentially decrease its
size, thus, increase the occurring uncertainty. Thus, for easier
usage, the matching results delivered by our approach can be
annotated with a note on the fuzziness source and type to be
taken into account by the requester. An example is “This result
is affected by a high amount of uncertainty due to provider-
induced fuzziness,” with “high” being an interpretation based
on the interval.
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VI. INTEGRATION INTO A FUZZY MATCHING PROCESS

In the following, we describe how the fuzzy reputation
matching approach proposed in Section V can be combined
with other matching approaches as part of a matching process.
Moreover, we adopt the example of fuzzy performance match-
ing in order to show how our fuzzy-logic-based approach can
be applied to other service properties.

A. Matching Process Integration

In our earlier work [62], we presented MatchBox, a frame-
work that supports a user in combining service matching ap-
proaches and reusing them within configurable matching pro-
cesses. As soon as matchers have been integrated, MatchBox
can be used to design and redesign matching processes arbi-
trarily often at model level, i.e., without having to reimplement
any source code. This enables a dynamic adaption to different
markets’ and different requesters’ requirements. Additionally,
the possibility to work at model level provides the user with an
abstraction that leads to a better overview than the source code
itself and, thereby, also increases maintainability of matching
processes.

Up to now, the MatchBox framework was designed with
regard to traditional matching approaches that deliver tradi-
tional matching results, ignoring all kinds of fuzziness. In
the following, we show how we can extend MatchBox by
integrating fuzzy matching steps such that we gain a novel
concept of fuzzy matching processes.

Figure 5 depicts a simplified visualization of a matching
process model with an integrated Reputation Matching
step. The reputation matching step executes a Fuzzy
Logic Reputation Matcher, representing a matcher
implemented on the basis of our approach proposed in
Section V. In addition to the reputation matching step,
there is a Signature Matching step, and a Protocol
Matching step and potentially many more matching
steps considering further functional and non-functional ser-
vice properties. The signature matching step executes an



0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2632115, IEEE
Transactions on Software Engineering

Ontological Signature Matcher with the configu-
ration possibility to decide whether operation names (Op.
names) should be considered during matching. The protocol
matching step processes the matching result delivered by
the signature matcher (msig) in order to deliver a protocol
matching result (mpro).

The control flow is a design decision made by the matching
process designer. A good heuristic to choose an order of
matching steps is to begin with matching steps that deliver
results that serve as hard constraints and end with optional
matching results. For example, in small markets with a low
number of suitable services, users will put a higher focus
on good matches regarding functional properties and view
non-functional properties as a nice-to-have. In these cases,
matching steps like protocol matching have to deliver good
results, otherwise, the process terminates (indicated by the
guard [mpro ≤ 0.8]). For this reason, we integrated the
reputation matching step as the last matching step. On the
other hand, if execution time is an issue (e.g., in very large
service markets), an alternative solution would be to put fast
matching steps first in order to filter out as many services as
possible before executing the more time-consuming matching
steps. In such cases, the reputation matching step should be
one of the first steps within the matching process.

At the end of the example process, there is an aggregation
step that aggregates the results from all matching steps using
a weighted averaging strategy. If the user is very interested
in the reputation data, then the weight for the reputation
matching step should be higher than the weights of other steps
(here: w(mrep) = 2, with 1 being the (default) weight for
all other steps, normalization is automatically performed by
the framework). For fuzzy matching results, the aggregation
requires special aggregation strategies that either work directly
on fuzzy matching results and also deliver matching results.
Alternatively, traditional aggregation strategies could be used
if the fuzzy matching results are two scalars, as described in
Section V-D, beforehand.

In addition, Figure 5 shows a simplified specification of the
Fuzzy Logic Reputation Matcher. Each matcher to
be used within a MatchBox matching process needs to be
provided with such a matcher specification in order to enable
the framework to support the user’s modeling activities and
to automatically validate and execute matching processes.
For example, the Result Kind has to be known to the
framework in order to delegate it to the aggregation strategy
so that it can automatically process this kind of result when
aggregating all matching results. Furthermore, the configura-
tion possibilities for each matcher can be specified here. For
example, the reputation matcher’s parameter Req_FS_range
refers to the fuzzy sets derived from soft constraints during the
translation from the requirements specification into fuzzy sets.
The parameter defines how “steep” the gradient will be, i.e.,
the possibility range. As a default (and also in the example
shown in Section V-B1), this parameter is set to 1.0.

In particular, such matching processes enable us to com-
bine matching of structural and behavioral service properties

c1: ReponseTime <  3 sec 
        based on Arch_A & Ctx_A

c2: MTTQR < 30 sec 

Entity Metric

Archi-

tecture Context Value
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… … … … …

(a) Requirements Specification (b) Service Information

Fig. 6. Performance Matching Example

with non-functional properties. For example, we could design
a matching process where matching steps with respect to
structural and behavioral properties act as filters (see example
discussed above), such that only services matching these
properties will be considered within the matching steps for
non-functional properties. The first could then be viewed as
hard constraints, and the latter as soft constraints.

More detailed information on MatchBox, without concepts
on fuzzy matching, can be found in our earlier work [62].

B. Fuzzy Performance Matching

The reputation matching approach presented in this paper
is only an example our fuzzy matching concepts can be
applied to. In this section, we want to briefly illustrate how
to apply our concepts to other matching approaches. As a
second example, we selected performance matching based on
performance prediction [11] and quality metrics [9]. Figure 6
shows an example explained in the following.

The representation of requirements and information about
a service in this figure is similar to the representation in
Figure 1(a). Here again, requirements consist of several condi-
tions, as depicted in the left part of the figure. In this example,
the conditions target response time (RT) and mean time to
quality repair (MTTQR) [9]. RT is the time that a service
requires to serve a response for a request. MTTQR is a metric
to measure the elasticity of a software service, i.e., the mean
time which a service needs to adapt to increasing or decreasing
workload by, for example, scaling its execution environment
out or in.

Information about how a market’s services perform with
respect to these metrics is depicted in Figure 6(b). However,
performance metrics are always specific to a service’s (a)
internal architecture and (b) external context [11]. The internal
architecture is determined by the service’s software architec-
ture, its implementation, and its execution environment. The
external context is determined by the service’s input (work)
and request rate (load). For example, an image processing
service’s response time is probably much lower if the service
is executed in a high-performance compute center compared
to the service being executed on a standard mobile phone.
Furthermore, the response time depends on the number of
concurrent service requests. Thus, the table in Figure 6 con-
tains different rows for different architectures and different
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contexts. The representation of execution environments and
usage scenarios is heavily simplified in the table. Actually all
abbreviations (e.g., “Arch A”, “Ctx A”) refer to more complex
models as known from performance engineering (e.g., [11]).

Fuzziness may occur in different manners. For example,
Condition c1 contains an approximation operator which may
lead to requester-induced fuzziness. Furthermore, the requester
did not specify the internal architecture for c2. The internal
architecture may not even be fixed but vary in case of
elastic services such as in cloud computing settings where the
execution environment can be scaled out or in. Accordingly,
the value for the service to compare with is uncertain. In
addition, there may be provider-induced fuzziness if a value
is not available for a certain environment or for a certain
usage scenario. Thus, similar as in our reputation example,
it is recommendable to model performance specifications as
fuzzy sets, as described in [10], and to apply our approach as
described in Section V.

Again, a fuzzy performance matching approach like this
can be integrated as part of a matching process as explained
in Section VI-A.

C. Generalizability

Performance is only one further example of how to apply
our approach to other service properties than reputation. In
general, all specifications from which we can derive numerical
data can be modeled using fuzzy sets. This is most common for
non-functional properties of a service (in addition to reputation
and performance, common examples are reliability or privacy-
related properties). However, also functional properties can be
modeled accordingly.

As an example, consider structural service specifications
in the form of operation signatures. Service matching ap-
proaches based on signatures often focus on (ontological)
parameter types that a service takes as an input or returns as
an output (e.g., [6]). Incompleteness and imprecisions could
come into play for both involved roles again. They occur on
the requester side whenever she specifies requests where she
leaves certain parameters open (“I want a room reservation
service but I don’t care about the detailed input format”).
Likewise, it appears on the provider side whenever the domain
knowledge the ontology of data types is based on lacked
certain knowledge about the relation between different terms.
In order to apply our approach, both the number of parameters
as well as the distance between different types (e.g., based
on ontological relations) can be transformed into numerical
values. As another example, consider behavioral specifications
in the form of protocols modeled with finite automata. Here
again, the requester side could leave room for variations
(e.g., if the protocol was derived from informal requirements
specifications), while the provider side could be incomplete
(e.g., if the protocol was derived based on reverse engineering
techniques). Examples for quantifiable properties based on
such models are the number of iterations or the length of traces
in general. In both examples, our approach can be applied.
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VII. IMPLEMENTATION

Our approach has been implemented as a part of the
MatchBox implementation [81] in the form of an Eclipse-
based framework for comprehensive, configurable matching
processes. The implementation is independent of the particular
matcher (e.g., the framework can be used for reputation
matching but also for other approaches such as performance
matching). This has been achieved by designing an architec-
ture (see Figure 7) based on three substitutable layers: fuzzy
logic layer, matching strategy layer, and the concrete matcher.
In order to evaluate the approach presented in this paper,
we used this framework in combination with a reputation
matcher. This matcher accepts input models in the form of
the specifications described in Sections II and V, transforms
them into fuzzy sets, and returns a matching result to the user.

Input specifications (i.e., requirements specifications and
service specifications or other service data) are specified within
our SeSAME framework [3], [82] which is based on the
Palladio Component Model [11]. Accordingly, all metamodels
are specified using the Eclipse Modeling Framework (EMF).

All matching results produced by MatchBox are stored and
presented in a hierarchical format collecting everything a user
may want to know about the performed matching process.
The MatchBox UI displays matching processes and matching
results in a graphical way.

Furthermore, MatchBox matching process implementations
are highly configurable. This also holds for the fuzzy matching
framework. For example, membership functions of fuzzy sets
can be derived in a more soft or a more strict way, depending
on the specified matcher configuration (cf. Figure VI-A).

For more information on the tool including screenshots,
a screencast, and installation instructions, we refer to the
MatchBox website [81].

VIII. EVALUATION

In the following, we report about four experiments we
performed using the implementation presented in Section VII
within the scope of our collaborative research center “On-The-
Fly Computing” [80]. The data used for the evaluation as well
as the complete results can be found online [63].
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A. Goals and Method

Our evaluation goal was to investigate whether our fuzzy
matching approach supports the service requester’s decision-
making by (a) explicitly incorporating fuzziness during ser-
vice matching and by (b) reflecting this fuzziness within the
matching result. Following the guidelines of evidence-based
software engineering by Kitchenham et al. [36], we formulated
our evaluation question as follows: “Do interval matching
results computed on the basis of fuzzy logic improve a service
requester’s decision-making in the presence of fuzziness?”

In order to answer this question, we applied our approach
as described in this paper to a set of example specifications in
four different experiments:

• Experiment 1: The first experiment is a toy example,
where we tested our evaluation setting in general and
the metrics we use to measure improved decision-making
in particular. These metrics are distinguishability and
the uncertainty represented within a matching result. We
consider these two criteria as the most important in the
requester’s decision-making when selecting a service.

• Experiment 2: This experiment is the main focus of our
case study. It uses the setting of Experiment 1 but in a
larger scope and based on real data. This experiment is
supposed to answer the main evaluation question.

• Experiment 3: In this experiment, we investigate scalabil-
ity as one property being a basic for the applicability of
our approach. Here, we focused on scalability in terms
of the amount of matched data.

• Experiment 4: The last experiment investigates both the
transferability of our approach to other service properties
and, in addition, the correctness of matching results
compared to results reported in the literature. By correct-
ness, we mean that the computed matching results highly
correspond to the reported results.

Addressing on distinguishability and the uncertainty rep-
resentation as the main focus of our evaluation is in line
with acknowledged decision-making literature. For example,
Ellsbergs studies [23], [24] discussed the importance of un-
certainty in decision-making by showing that people prefer
taking a known risk rather than taking an unknown risk even
though the probability for a better outcome may be low. Others
agree that coping with uncertainty “lies at the heart of making
a decision” because uncertainty constitutes a “major obstacle
to effective decision-making” [50] and that human choices
depend on how much relevant information is missing [28]. In
all these studies, distinguishability is a foundation to decision-
making, too.

In the following, we give more detailed information about
each experiment and its results.

B. Experiment 1: Toy Example

In this experiment, we applied our approach to 10 services
within the domain of university management with 500 ratings
in total as well as one requirements specification including

five conditions (see Figure 1(a)). All specifications in this
experiment have been constructed manually.

Following the example by Esfahani et al. [25], we compared
our approach to an alternative approach that does not handle
fuzziness. The alternative approach is the traditional matching
approach introduced in Section II-B that uses exact match-
ing. The traditional approach ignores all induced fuzziness
by turning fuzzy terms into hard thresholds and using the
arithmetic mean as an estimated reputation value instead of
representing it in terms of a possibility distribution. As a
consequence, in the traditional approach, we only distinguish
between mismatching conditions (result = 0) and matching
conditions (result = 1). The results per condition are aggre-
gated using the average—the same aggregation function as
used for aggregating the results in our new approach.

Recall that, in our new approach, the evaluation of a
service is represented in the form of a necessity/possibility
interval [n, p] or, given a level of risk aversion, a score r as
defined in Equation 9. Our experiments are intended to show
some advantages of this representation in comparison to the
traditional results, notably the following:

• Distinguishability: Comparing requirements and services
in a fine-granular way using fuzzy sets will often allow
for distinguishing services that match equally well under
the traditional approach. Given the evaluation of a set of
services, we define the degree of distinguishability as the
probability that a pair of two services selected (uniformly)
at random from all pairs (and a level of risk aversion
randomly in [0, 1]) can be compared, i.e., do not have the
same score.

• Uncertainty representation: The width of the interval
[n, p] informs about the uncertainty of the evaluation. In
particular, the upper bound p informs about the potential
of a service. In principle, the suboptimality of a service
with evaluation [n, p] is not proven unless there is another
service with evaluation [n′, p′] such that p < n′; in
this case, we say that the former is dominated by the
latter (note that the term “dominated” here does not
refer to Pareto-dominance but to a weaker concept of
domination).

Figure 8(a) shows the matching results for each service. The
traditional results (TR) are gradual to a specific extent because
of the aggregation of results per condition into an overall
result. Nevertheless, as can be seen, we cannot differentiate
between some of the services. For example, s2 and s3 both
have a matching result of 0.4, and s8 and s9 both have a score
of 0.8. Thus, selecting one of the services on the basis of the
traditional results becomes a difficult task for the requester.
The degree of distinguishability for the traditional results –
calculated based on the metric explained above – is 0.8.

For comparison, the degree of distinguishability for the
fuzzy results (FR) from Figure 8(a) is 1. This means that all
services can be distinguished from each other on the basis
of the new matching results which are represented by [n, p]
intervals. Figure 8(a) shows the [n, p] intervals as well as the
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Fig. 8. Results of Experiment 1

best and worst rank possible for each service. The best rank
is obtained if the service assumes its upper bound p while
all others assume their lower bounds n, and vice versa for
the worst rank. For example, s10 could be on rank one, if
full information would lead to a matching degree equal to the
upper bound of 0.85. However, full information could also
have negative consequences for this services, i.e., the final
matching degree of s10 could develop towards the lower
bound of 0.1 and the other services develop towards higher
degrees. In this situation, s10 would get the very worst rank.
In contrast, Service s8 is a good choice in any way as it could
be ranked first, but it will never be worse than Rank 4. This
information is valuable not only for the requesters but also
for service providers because—since we deal with provider-
induced fuzziness here—it allows them to decide whether they
should spend effort in providing more information. In the case
of reputation data, the providers could, for example, invest into
special test licenses for their services so that they motivate
more users to publish ratings.

Moreover, Figure 8(b) depicts the results in a neces-
sity/possibility diagram, where each service is represented as
a point. The more certain the evaluation [n, p] of a service,
the closer it lies to the diagonal (because n ≈ p). The upper
right corner represents services that can be viewed as certainly
good matches (both n and p are high). In contrast, results
in the upper left corner are potentially but not necessarily
good. These matching results contain a high amount of fuzzi-
ness reflected by large intervals. Obviously, the representation
based on [n, p] intervals provides more information than the
traditional results in the table and, thereby, supports decision-
making much better.

For example, consider again the services s2 and s3 (repre-
sented by a black filled square) and s8 and s9 (represented by
a black filled circle) within the necessity/possibility diagram.
s8 being located closer to the right upper corner than s9
shows that s8 is the better choice than s9, in any case. s2
and s3 do not dominate each other and are both rather average
results.
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Req 7 0,660 0,826 0,570 0,813

Req 8 0,498 0,842 0,487 0,886

Req 9 0,743 0,941 0,729 0,909

Req 10 0,597 0,648 0,514 0,447
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Fig. 9. Degrees of Distinguishability (Exp. 2)

C. Experiment 2: TrustRadius Ratings

The setting for Experiment 2 is similar to the first one except
for the use of real input data and real requesters instead of
simulated data. We collected ratings from the software rating
website TrustRadius.com [79]. At TrustRadius.com, software
is classified into different categories regarding the functionality
and rated by people according to different properties (e.g.,
usability, availability, performance, and overall recommenda-
tion). For example, at the time of evaluation, TrustRadius listed
34 services with in total 520 ratings in the category “Content
Management Systems” (CMS).

We matched these services against 25 requirements spec-
ifications (including one to five conditions) that have been
specified by computer science students and graduate students
that had no knowledge about the internals of the matching
algorithm. Figure 10 shows two examples specified by two
different test persons. The properties allowed within the con-
ditions in these requirements specifications were limited to the
kinds of ratings TrustRadius contained most data for: Overall
Rating, Usability Rating, Availability Rating, and Performance
Rating. In addition to the Content Management Systems, we
repeated this experiment for the category “Accounting and
Budgeting Services” (A&B), which comprised 23 services
with a total of 615 ratings. In total, this leads to 850 matching
results for CMS and 575 matching pairs for A&B.

Figure 9 provides a summary of the degrees of distinguisha-
bility of the matching results for the first ten requirements
specifications within the two data sets (A&B and CMS). The
results are shown both for the traditional results (TR) and
for the new fuzzy results (FR). The higher the bar, the better
is the distinguishability among the results. For example, the
distinguishability of 0 for the traditional results for Req 3
shows that all services are associated with the same result
in this case. In contrast, the fuzzy results at least allows
to distinguish between some different results. This trend is
also shown for the other requirements. As can be seen, the
fuzzy approach consistently improves the distinguishability
across almost all requirements specifications. This fact is also
confirmed by the Wilcoxon signed-rank test. We conducted
this test over the pairs of distinguishabilities of the tradi-
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c1: Rep(Service) > 4
         based on many ratings 

c2: RepAvail(Service) > 4
          based on many ratings

 

 

c2: RepUsab(Service) > 3
          based on many ratings

c1: Rep(Service) > 4 

c3: RepAvail(Service) > 2

(a) Specification of Req 1 (b) Specification of Req 9

Fig. 10. Two of the example requirements specifications used within Exper-
iments 2 and 3

tional and the fuzzy approach. The null hypothesis that the
median difference between the pairs of distinguishabilities is
zero, can be rejected as the obtained p-value is smaller than
1× 10−4 (p = 9.556× 10−5 ). This finding is in line with our
expectations. In the following, we discuss a selection of the
results in more detail. For the complete lists of results, refer
to the website [63].

As an illustration, Figure 11 shows the diagrams for Re-
quester 1, 6, 8 and 9 in the A&B and CMS setting, re-
spectively. As can be seen, the specification of Requester 1
lead to more precise evaluations of the services (points are
lying close to the diagonal) than those of the three others.
In line with Figure 10(a), the diagram also reflects that
Req 1 is quite demanding, since even the highest possibility
degrees do not exceed 0.5. Nevertheless, such ratings are of
course more useful than scores of 0 that are likely to be
obtained in the traditional approach. As opposed to this, the
requirements of Req 9 (see Figure 10(b)) are lighter, at least
for the availability ratings, as can be seen from the many
services with matching results having a possibility degree
of 1. Nevertheless, there are only a few services having a
high necessity degree, suggesting some obvious choices for
this requester. Alternatively, she may consider tightening her
requirements.

When inspecting some selected results in even more de-
tail, we find further indications for the benefit of our new
interval results. For example, when matching requirements
specification Req 6 to the CMS services, the traditional
results only distinguished between three groups of services:
services that do not match at all, services that match with
a result of 0.25, and two services that match with a result
0.5. The services with the result of 0.5 are the well known
CMS services Joomla! and Drupal. In contrast, considering
the interval results (see Figure 11, Req 6, right diagram),
Joomla! ([0.4,0.65]) dominates Drupal ([0.217,0.55]). Joomla!
is potentially the better match and more certainly a good
match. Still, for both services, the possibility value, i.e., the
upper threshold, is rather low. Interestingly, the interval results
also reveal that some services among those with a traditional
result of 0.25 are potentially a better choice. Among these is
WordPress which is, according to the interval results ([0.375,
0.75]), potentially a much better match, even though Joomla!
is more certainly a good match.

On the basis of these results, when choosing among these
two services, a risk-averse requester would choose WordPress,
and a risk-affine requester would rather choose Joomla!.

Joomla! [0.4, 0.65]

Drupal [0.217, 0.55]

WordPress [0.375, 0.75]

Joomla! [0.5, 0.5]

WordPress [0.4, 0.4]

Concrete5 [0.47,0.72]
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necessity necessity

Fig. 11. Example necessity/possibility diagrams of Experiment 2

Thereby, the interval results help requesters in finding their
best choice depending on their own characteristics much better
than the traditional results. In fact, there is another service,
Concrete5, dominating Joomla! and building a small Pareto
front with WordPress. So, typically, the real decision would
probably be between these two services.

Furthermore, the result again strongly depends on the
requirements specification. In the results for most of the
other requirements specifications, Joomla! clearly dominates
WordPress. As an example, consider Figure 11 again (Req
1, right diagram), where Joomla! dominates all other services
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Req 1 0 0 2

Req 2 1 2 2

Req 3 0 0 0

Req 4 0 0 0

Req 5 1 3 5

Req 6 1 3 5

Req 7 0 0 2

Req 8 0 0 1

Req 9 0 0 0

Req 10 0 0 0

Req 11 0 0 0

Req 12 0 0 0

Req 13 0 0 0

Req 14 0 0 1

Req 15 0 0 0

Req 16 1 3 5

Req 17 0 0 0

Req 18 0 0 0

Req 19 0 0 0

Req 20 0 0 0

Req 21 0 1 3

Req 22 0 1 3

Req 23 0 0 0

Req 24 0 0 0

Req 25 0 0 0

# (>0) 4 6 10

Top1  Top3  Top5

# Differences in

Rank Ranked by n Ranked by p

1 Concrete5 [0.47,0.72] WordPress [0.375,0.75]

2 Joomla! [0.4,0.65] Concrete5 [0.47,0.72]

3 WordPress [0.375,0.75] Joomla! [0.4,0.65]

4 Cascade S. [0.275, 0.525] ExpressionE. [0.15, 0.65]

5 Kentico8 [0.275,0.525] Sitecore [0.25, 0.55]

(a) List of differences (c) Ranking for Req 6

(b) Proportions of differences

Fig. 12. Results of Experiment 2 with ranks within CMS case

with a result of [0.5,0.5], while WordPress got a result of
[0.4,0.4]. These differences among the results for the same
services but set in relation with different requirements spec-
ifications indicate that it makes sense to work with more
complex requirements specifications allowing the requesters
more freedom than related works do.

In general, when considering the traditional results, some
services often “hide” within a group of equal matching results,
while the interval results more clearly identify them as good
candidates depending on the risk a requester is willing to take.

This fact can also be observed when comparing different
rankings. We can either rank the services by their necessity
value in descending order, or we can rank them by their
possibility value in descending order. In the cases where un-
certainty is induced, the necessity-ranking and the possibility-
ranking can be expected to be different from each other.
Figure 12(a) lists the differences in these rankings with respect
to the top most promising CMS-services (top 1, top 3, and
top 5) for each requirements specification. The numbers in
the single lines are the numbers of considered ranks that were
allocated with different services. For example, a 5 in the top-
5-column means that 5 out of 5 positions differ between the
two rankings. As can be seen, in 4 out of 25 cases, the
top 1 service differs in the two rankings. These are exactly
those cases, where the necessity/possibility diagrams depict
(at least small) Pareto fronts. Considering the top 3 results,
the rankings differ in 6 out of 15 cases and in the top 5
results, the ranking differs in even 10 out of 15 cases. These
numbers are also visualized in the pie chart in Figure 12(b).
As shown there, in 40% of the cases, we get different results
due to uncertainty. Thus, in 40% of the cases, the decisions
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Fig. 13. Results of Experiment 2 with varying completeness grades

made by the requesters are improved when considering our
interval results. In 16%, we even get extremely different
results, meaning that even the services at the top position of
the rankings differ. One example is the ranking for Req 6,
displayed in Figure 12(c). On the one hand, when ranking
the results based on the necessity values, i.e., the ranking a
risk-averse user would prefer, Concrete5 gets the first rank,
Joomla! gets the second, and WordPress gets the third.
On the other hand, when ranking the results based on the
possibility values, i.e., the ranking a risk-affine user would
prefer, WordPress gets the first rank, Concrete5 gets the
second, and Joomla! gets the third. These findings are also
in line with the corresponding necessity/possibility diagram
in Figure 11. We can find even more extreme differences.
For example, when the necessity-ranking for Req 5, ranks
services into the top 5 that, however, receive the very worst
ranks in the possibility-ranking. Such examples show how
important the consideration of lower and upper bounds, and,
consequently, the consideration of uncertainty is. Here, the
consideration of uncertainty clearly prevents potentially bad
decisions made by the requester.

With a final experiment, we like to show that, compared
to the traditional approach, our fuzzy approach tends to be
more robust in situations where information is scarce, and
hence to yield a more stable and reliable assessments of
services. To this end, we look at how the rank of a service
changes depending on how often it has been rated. More
specifically, simulating a scenario in which a new service
enters the market, we start with the first quarter of the ratings
(Grade 1) and successively add the other quarters till reaching
the total number of ratings available in the data set (Grade 5).
These grades represent the x-axis of Figure 13. The y-axis
represents the rank within the group of services matched to
Req 8. The graph shows the ranks for service OU Campus
at different grades of completeness and for different levels of
risk-aversion of the requester. The risk-aversion is calculated
with Equation 9.

As an example, Figure 13 shows results for the service OU
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Campus and Req 8. The graph depicts the mean rank of
this service at different grades of completeness, and for dif-
ferent levels of risk-aversion of the requester (calculated with
Equation 9). Overall, OU Campus appears to be a mediocre
service, though its ranking gets better with an increasing num-
ber of ratings. Moreover, as expected, the ranking drops when
increasing the level of risk-aversion, although the ranks for all
levels of risk-aversion converge as the grade of completeness
increases (recall that, in the limit, the interval [n, p] reduces to
a single point). In summary, the ranking of the service depends
on the amount of information available and the risk-aversion
of the requester, but the changes are moderate.

In contrast to this, the traditional matching approach shows
a much more drastic behavior. Due to its binary nature, the
request is either matched or not, hence the service is either
ranked high or low. In this case, OU Campus does not reach
the top 20 until Grade 5 of completeness, when it suddenly
jumps to Rank 7 (the ranks plotted here are mean ranks; as
discussed earlier, the possibly large number of services with
equal rating is another problem of the traditional approach).
Thus, while the fuzzy approach enables us to identify and
reliably assess (partially) matching services even in situations
when only limited data is available, the traditional matching is
much more prone toward the incompleteness of the underlying
data.

D. Experiment 3: Scalability

In a third experiment, we tested how our approach scales
to a broad range of input data. For this purpose, we generated
1000 random requirements specifications and matched them
against all services in all categories from TrustRadius. These
were, at evaluation time, in total 924 services with altogether
10907 ratings. As a consequence, we got 924000 matching
results. The mean total runtime for all 924000 matching
runs amounts to 642 seconds (10.7 minutes). We measure
this on a system with Windows 8.1, 64-bit with 8GB RAM
and an Intel(R) Core(TM) i7-2640M CPU @2.80GHz. More
information about the data are given on the website [63].

In light of the high number of input data, we find this
result very satisfying. In reality, we do not expect that so
many services need to be matched at the same time on the
basis of reputation data, especially since many services can
be filtered out by earlier matching steps that check simpler
properties. Furthermore, manual inspection showed that much
of the measured time is spent on saving matching results in the
form of complex object trees that are constructed in order to
provide the user with as much information about the matching
as possible.

E. Experiment 4: Performance Matching

Our fourth experiment is based on data from a performance
simulation of a self-adaptive service, as described in [10]. In
[10], three different service architectures of a cloud-based web
service have been simulated. The three architectures vary from
each other in terms of their autonomous resource provisioning.
Service S_a can provision or deprovision resources like

virtual machines every 5s, Service S_b every 10s, and Service
S_c every 20s. The provisioning and deprovisioning times are
limited by the rate each system architecture monitors its own
mean response time, i.e., the frequency of its self-adaptation
feedback loop. The performance simulation provides predicted
response times and the predicted MTTQR for each self-
adaptive service architecture in a specified workload context.
For all three services, service requests with an exponentially
distributed interarrival rate λ = 41

s for 100 seconds have
been simulated. Within these 100 seconds, the authors obtained
415 response time values for S_a, 393 values for S_b, and
376 values for S_c. Furthermore, one MTTQR value for
each of the services S_a, S_b, and S_c has been obtained.
According to the results reported in [10], S_a is the best
performing service with respect to response time and MTTQR.
It dominates S_b while S_b again dominates S_c.

For our experiment, we used the same simulation data as an
input for our fuzzy performance matcher in order to compare
our matching results to the reported results. Table III shows
the matching results for four manually specified requirements
specifications Req 1’, Req 2’, Req 3’, and Req 4’
matched to the service specifications of S_a, S_b, and S_c.
The requirements specifications increase in their strictness
starting with a requested response time lower than 3s and
a requested MTTQR lower than 40s in Req 1’ down to
a requested response time lower than 1.5s and a requested
MTTQR lower than 10s in Req 4’.

TABLE III
MATCHING RESULTS FOR EXPERIMENT 4

S_a S_b S_c
Req 1’ [1.0 , 1.0] [1.0 , 1.0] [0.0 , 0.041]
Req 2’ [1.0 , 1.0] [0.649 , 0.725] [0.0 , 0.0]
Req 3’ [0.9 , 1.0] [0.300 , 0.467] [0.0 , 0.0]
Req 4’ [0.599 , 0.765] [0.146 , 0.39] [0.0 , 0.0]

Best/Worst Ranks 1/1 1/2 3/3
Rank in [10] 1 2 3

As we can see in the results, our matching results are in
line with the results reported in [10]. Service S_a receives
the best rank for all requirements specifications, while S_c
always receives the worst rank. S_b is on Rank 2 for Req 2’
to Req 4’ and on Rank 1 for Req 1’ together with S_a
because Req 1’ is not very strict.

These results show that our matching results fit to the refer-
ence results. However, in addition, our results also provide the
extra information of fuzziness. For example, for Req 3’, S_a
is not necessarily a full match. Due to imperfect information,
we can only determine that the matching result is higher than
0.9097. This information is especially helpful for a very risk-
averse requester. As another example, the provider of S_b can
learn that providing more information can potentially improve
her ranking in general, however, providing more information
definitely is not sufficient to rank her service best for most of
the example requirements specifications. She would also need
to adapt the service itself (e.g., its implementation) in order
to improve her revenue.
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F. Discussion and Limitations

Addressing the two metrics distinguishability and the repre-
sentation of uncertainty as discussed above, allows us to con-
clude from our evaluation results that a user can make a more
informed decision based on the matching results delivered by
our new approach compared to traditional ones. Especially the
results of Experiment 2, based on real service ratings given
by real users, show that (a) the distinguishability that comes
with the interval results as well as (b) the consideration of
uncertainty can prevent bad decisions when selecting a service.

Furthermore, we showed in Experiment 3 that our approach
is also able to handle a big amount of data, which makes
it applicable in practice. In addition, Experiment 4 showed
the correctness of our matching results compared to reference
results from the literature. Experiment 4 also showed that
the matching approach can be used not only for reputation
specifications, but also for specifications of other properties,
like performance.

Nevertheless, there are still threats to the validity of our
evaluation. For example, although we were able to apply
our reputation matching approach to a lot of real data, we
still got relatively few ratings per service. This leads to a
number of large intervals (almost [0,1]). However, compared
to the traditional results, the user is at least provided with
the information that the matching result is almost unknown,
instead of leading the user to trust an unreliable result which
may lead to a bad choice. Using the interval results, the user
has the possibility to decide on her own how much risk she
is willing to take.

Furthermore, the traditional matching approach we used as
a baseline could also vary in its functionality. For example, a
matching approach leading to more fine-grained results would
also make an interesting comparison. The same holds for the
performance simulations used for comparison. In the future,
we need to find more possibilities to compare our matching
results to other matching approaches. However, we still need
to take into account challenges like the availability of example
specifications and the comparability of fuzzy matching results
to results in simpler formats.

Another problem when evaluating fuzzy matching results is
that there is no “ground truth”. On the basis of reputation data,
we cannot determine which service is truly the best selection
or what is truly the correct degree of induced fuzziness. Ex-
periment 4 addresses this problem to some extent as we have
reported values for other service properties, like performance,
that we can use for evaluating whether the tendencies of the
fuzzy matching results correspond to the reported values. But
still, we cannot identify false positives or false negatives,
as it is often done for traditional matching results that only
distinguish between “match” and “mismatch”. Furthermore,
the “best result” also varies from user to user, so it is hard to
incorporate such knowledge into an evaluation.

One limitation to our current approach is the transformation
of specifications into fuzzy sets. At the moment, we are using
the same transformation for all requesters, although different

requesters may have different interpretations of soft thresholds.
It should be investigated whether requesters should be able to
model the fuzzy sets used for matching on their own under
consideration of the extra effort for requesters. In general,
the appropriate level of complexity for specification languages
used in this context is subject to research. The question is not
only how much complexity requesters can handle but also how
much existing service markets support. For example, many
of today’s app stores support rather simple reputation models
(e.g., no differentiation between multiple contexts).

IX. CONCLUSION

In this paper, we have introduced an approach for fuzzy
service matching on the basis of imperfect information. We
presented a systematic procedure based on fuzzy logic and
possibility theory that extends traditional approaches from
the areas of service discovery and component retrieval. In
particular, our approach goes beyond related work in terms
of informativeness of the returned matching result. Moreover,
unlike our approach, related approaches do not distinguish
between fuzziness in the sense of graded user satisfaction and
fuzziness in the sense of incomplete information about service
properties. Using our approach, the user can make a more
informed decision when choosing among provided services.
By explicitly considering imprecise and incomplete service
specifications, our approach makes service matching applica-
ble in practice as it considers more realistic assumptions than
traditional approaches.

There are still open issues in this area. First of all, we need
to apply our approach to other kinds of service descriptions
(e.g., security requirements or behavioral specifications) and
perform corresponding case studies. Moreover, we plan to
address other fuzziness types and sources, e.g., approximations
and algorithm-induced fuzziness. Along with these concepts,
the user can be provided with matching results that indicate
whether the input specifications or the matching algorithm in-
duced fuzziness. Based on this, the user could also be provided
with proposals for how to reduce the occurred fuzziness, if
possible. Furthermore, our approach could benefit from more
advanced techniques for aggregating evaluations on different
conditions into an overall evaluation. The weighted average
we are currently using for that purpose is not very flexible;
in particular, one could imagine that a requester will not only
average but also adopt conjunctive or disjunctive modes of
aggregation [69].
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An Overview of Service Specification Language and Matching in On-
The-Fly Computing, Technical Report. Technical Report tr-ri-15-347,
Heinz Nixdorf Institute, University of Paderborn, July 2015.

[3] S. Arifulina, S. Walther, M. Becker, and M. C. Platenius. SeSAME:
Modeling and Analyzing High-quality Service Compositions. In Proc.
of the 29th ACM/IEEE Int. Conf. on Automated Software Engineering,
ASE’14, pages 839–842. ACM, 2014.

[4] D. Bacciu, M. G. Buscemi, and L. Mkrtchyan. Adaptive Service
Selection–A Fuzzy-valued Matchmaking Approach. Technical report,
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[69] R. Senge and E. Hüllermeier. Top-Down Induction of Fuzzy Pattern
Trees. IEEE Transactions on Fuzzy Systems, 19(2):241–252, 2011.

[70] C. Shapiro. Premiums for High Quality Products as Returns to
Reputations. The Quarterly Journal of Economics, 98(4):659–680, 1983.
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